Extensions 1→N→G→Q→1 with N=C32xDic3 and Q=C2

Direct product G=NxQ with N=C32xDic3 and Q=C2
dρLabelID
Dic3xC3xC672Dic3xC3xC6216,138

Semidirect products G=N:Q with N=C32xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32xDic3):1C2 = C33:8D4φ: C2/C1C2 ⊆ Out C32xDic336(C3^2xDic3):1C2216,129
(C32xDic3):2C2 = C3xC3:D12φ: C2/C1C2 ⊆ Out C32xDic3244(C3^2xDic3):2C2216,122
(C32xDic3):3C2 = C3xS3xDic3φ: C2/C1C2 ⊆ Out C32xDic3244(C3^2xDic3):3C2216,119
(C32xDic3):4C2 = C3xC6.D6φ: C2/C1C2 ⊆ Out C32xDic3244(C3^2xDic3):4C2216,120
(C32xDic3):5C2 = Dic3xC3:S3φ: C2/C1C2 ⊆ Out C32xDic372(C3^2xDic3):5C2216,125
(C32xDic3):6C2 = C33:8(C2xC4)φ: C2/C1C2 ⊆ Out C32xDic336(C3^2xDic3):6C2216,126
(C32xDic3):7C2 = C32xC3:D4φ: C2/C1C2 ⊆ Out C32xDic336(C3^2xDic3):7C2216,139
(C32xDic3):8C2 = S3xC3xC12φ: trivial image72(C3^2xDic3):8C2216,136

Non-split extensions G=N.Q with N=C32xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32xDic3).1C2 = C33:4Q8φ: C2/C1C2 ⊆ Out C32xDic372(C3^2xDic3).1C2216,130
(C32xDic3).2C2 = C3xC32:2Q8φ: C2/C1C2 ⊆ Out C32xDic3244(C3^2xDic3).2C2216,123
(C32xDic3).3C2 = C32xDic6φ: C2/C1C2 ⊆ Out C32xDic372(C3^2xDic3).3C2216,135

׿
x
:
Z
F
o
wr
Q
<